K^3-5k^2+16k-12=0

Simple and best practice solution for K^3-5k^2+16k-12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for K^3-5k^2+16k-12=0 equation:



^3-5K^2+16K-12=0
We add all the numbers together, and all the variables
-5K^2+16K=0
a = -5; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-5)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-5}=\frac{-32}{-10} =3+1/5 $
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-5}=\frac{0}{-10} =0 $

See similar equations:

| -5*(x+2)+1=4x | | 2x+3/12=1/3 | | 4(w-6)=28 | | 8x+11=6x+9 | | 1x+20=x+20 | | (2)/(3)(6x+30)=x+5(x+4)-2x | | 2x-5=5x+17 | | 0,4+x=288 | | 0.6+x=288 | | 125=500+25x | | 0,6+x=168 | | 7·(–4x–5)–8x=9·(–3x+8)–98 | | X^2+7y+10=0 | | x+x/5=288 | | 9^2x-1=3^3 | | 4l+8=24 | | 1.8=3.14x^2 | | 5-(2/3x)=1 | | 7q-6=43 | | 3w+10=+25 | | 4(6z-4)-3=(3z-3) | | 4(6z-4)-3(3z-3=) | | 2(n-6)=18 | | 10x-70=-14 | | 480=1/2x(19+13) | | 5x÷100=30 | | 0.5x+1=x+1.5 | | -3/7=-9/14m | | 4x-3-2x=5 | | 185x=12 | | x^2=16,x | | 4/x−x/4=3/2 |

Equations solver categories